DOE Distributed Power & Industrial DG Quarterly Review Meeting

Increasing the Use of DG in the Semiconductor Industry

Subcontract # 400006029

Barry Cummings, SRP

Acknowledgement

- **♯**Joe Galdo, DOE/OPT Program Manager
- **♯**Tom Rizy, Technical Project Monitor Oak Ridge National Laboratory
- **♯**Phil Sarikas, Industry Advisor Intel Corporation

Status

- #Final Report Draft Complete
- #Peer Review in-process

Objectives

- # Management decision guideline
- Research tool for site-specific, feasibility studies
- # Estimated USA DER FAB market

Scope

- **♯** Focus on large 10 to 50 MW semiconductor FAB plants
- # Evaluate economic, reliability, availability, and environmental issues and opportunities
- Evaluate potential multiple uses of DER to justify the investment

Final Report Outline

- # Guidelines for Selecting a DER Project
- **♯** Environmental, Legal, and Institutional Issues
- **■** Design Concepts
- **■** Potential Market Impact
- **■** Risk Assessment
- **#** Conclusions/Results

Appendices

- **♯** Process Diagrams
- **■** Electrical Single Line Diagrams
- **♯** General Arrangements
- **#** Schedules

Conclusions

- **♯** Combustion Turbine only acceptable DER alternative
- **■** By 2010, Fuel cells <u>may</u> acceptable.
- **♯** DER market penetration likely to be limited
- # "Retrofit" existing FABS unlikely to occur
- **★** Except fuel prices, risk will <u>not</u> be a major deterrent

Two alternatives: One GE LM 6000 or Two GE LM 2500

	CASE							
	2A	2B	3A	3B	4A	4B	5A	5B
1-GE LM 6000	X	X	X	X	-			
2-GE LM 2500			7,-7		X	X	X	X
Cogeneration	X	X	X	X	X	X	X	X
Combined Cycle	X	X			X	X		
Simple Cycle			X	X			X	X
Steam Turbine Chillers	X	4	X	7.4	X	<u> </u>	X	
Absorption Chillers		X	$\overline{\Sigma}(\Sigma)$	X		X	$\langle \hat{\omega} \rangle / \gamma$	X

Gas Price versus Electric Prices

Sources of Costs and Benefits

Economic Case Study Example

	Base Case	Combustion Turbine
Total Capital Cost	\$65 million	\$100 million
Net Present Value	Base	\$15 million
Simple Payback	Base	4.0 years
Internal Rate of Return (IRR)	Base	28%

Economic Assumptions

Variable	Value		
Cost of capital	18%		
Plant life	15 years		
Grid supplied electricity	\$0.055 / kWH		
Natural gas	\$3.50 / MMBTU		
Excess electricity sales	\$0.05 / kWH		

Combustion Turbine effect on PQ sag event

Calculated MTTF as a function of various supply scenarios

(base case = three 69kV sources, no DG)

External Risk Conclusions

- ➡ Siting requirements for space and visual impact only be available at new FAB
- Public process and design alternatives likely to be successful
- Inspections and existing review processes will be challenge
- ★ Size and emission levels unlikely a 'major source' issue.

Capital cost differences

Energy annual cost differences

O&M annual cost differences

Forecast FABs by Wafer Size

	YEAR			
Wafer Size	2001	2002	2003	
6 inches	2	2		
8 inches		2	0	
12 inches	2	2	5	
Total	5	6	6	

Marker Penetration Conclusion

Market Global Impact Minimal

♯ Number of DERs

★Air emission

♯ Natural gas usage

NOTE: Site specific impacts may be significant